本课件是周帅老师数学网课资料,内容全面,包含了很多知识点整理讲解和视频教程,可以帮助同学们在以后的学习和考试中有所收获!
概率密度函数的性质
非负性:f(x)≥0,x∈(-∞,+∞)。规范性:∫f(x)dx=1。这两条基本性质可以用来判断一个函数是否为某一连续型随机变量的概率密度函数。在数学中,连续型随机变量的概率密度函数(在不至于混淆时可以简称为密度函数)是一个描述这个随机变量的输出值,在某个确定的取值点附近的可能性的函数。
而随机变量的取值落在某个区域之内的概率则为概率密度函数在这个区域上的积分。当概率密度函数存在的时候,累积分布函数是概率密度函数的积分。概率密度函数一般以小写标记。
单纯的讲概率密度没有实际的意义,它必须有确定的有界区间为前提。可以把概率密度看成是纵坐标,区间看成是横坐标,概率密度对区间的积分就是面积,而这个面积就是事件在这个区间发生的概率,所有面积的和为1。所以单独分析一个点的概率密度是没有任何意义的,它必须要有区间作为参考和对比。
两个矩阵相乘等于0说明什么
两个矩阵相乘等于0说明两个矩阵都非满秩矩阵,在数学中,矩阵是一个按照长方阵列排列的复数或实数集合,最早来自于方程组的系数及常数所构成的方阵; 矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。
矩阵是什么
在数学中,矩阵是一个按照长方阵列排列的复数或实数集合,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。
矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。
感兴趣的同学可以下载本课件学习,通过老师的讲解把自己不理解的部分多多学习一下,一定可以在以后的学习中学的越来越好的!

本站所有资源版权均属于原作者所有,这里所提供资源均只能用于参考学习用,请勿直接商用。若由于商用引起版权纠纷,一切责任均由使用者承担。更多说明请参考 VIP介绍。

最常见的情况是下载不完整: 可对比下载完压缩包的与网盘上的容量,若小于网盘提示的容量则是这个原因。这是浏览器下载的bug,建议用百度网盘软件或迅雷下载。 若排除这种情况,可在对应资源底部留言,或联络我们。

对于会员专享、幼儿资源、小学资源、初中资源、高中资源、考研资料、教师资格证等类型的资源,文章内用于介绍的图片通常并不包含在对应可供下载资源包内。这些相关商业图片需另外购买,且本站不负责(也没有办法)找到出处。

如果您已经成功付款但是网站没有弹出成功提示,请联系站长提供付款信息为您处理

学科资源属于虚拟商品,具有可复制性,可传播性,一旦授予,不接受任何形式的退款、换货要求。请您在购买获取之前确认好是您所需要的资源